
Raju Chiluvuri Pioneer-soft Inc Page 1 of 3

What is a CBP (Component Based Product)?

There will be a revolution in Software Engineering (by subverting the existing

flawed dominant paradigm that is rooted in primordial, unproven, and flawed dogma)

if the software community investigates facts and evidence scientifically to learn valid

answers and descriptions, scientifically, honestly, and with integrity (by adhering to

proven scientific principles), for these 2 simple questions in the context of all other

engineering disciplines such as Mechanical, Electronic, Computer, Civil, & Aerospace:

1. What is a real CBP (Component-Based Product)? In other words, what is the

structure and anatomy of CBPs (Component-Based Products)?

2. What are real Components (i.e. a very specific kind of parts) that are essential to

building real CBPs?

I have been requesting real scientists who are honest and have integrity to

validate my answers scientifically. It is the least general public expects from the

Raju Chiluvuri Pioneer-soft Inc Page 2 of 3

scientific community. I am hoping that real scientists who are honest and having

integrity validate my discoveries and patented inventions.

Understanding the following two simple facts scientifically subverts existing

flawed dominant paradigm for Software Engineering by exposing myths in the

foundation of the paradigm. Do these two simple facts require any proof: (1) No

product can be a CBP if the product is not built by assembling multiple components

(e.g. as illustrated in FIG-2). (2) It is essential to invent new kind of components (e.g.

objects instances) that can be assembled, by inventing mechanisms and tools (e.g.

such as a SoA as in FIG-2) for example, to build a product by plugging in components:

http://real-software-components.com/raju/Briefs/WhatIsStructureOfCBP.pdf

Once valid answers and descriptions for CBPs and Components are found

scientifically (without violating proven scientific principles), it is not difficult to make

inventions that are necessary to build every large software products by plugging in

multiple optimal-sized components as in FIG-2. My objective is to prove these 3 facts:

1. CBE (Component-Based Engineering) implies designing and building

Component-Based Products, where a CBP (Component-Based Product) implies

a product built by assembling multiple components as illustrated in FIG-2, and

where the components are a very specific kind of parts that can be assembled.

2. Today, it is impossible to find even a single software product that is designed and

built by assembling real software components as illustrated in FIG-2. Therefore,

Software Engineering is not employing real CBE paradigm today, since real

software components (i.e. a very specific kind of parts that can be assembled)

are not yet known and Software Engineering is incapable of building CBPs.

3. It requires three kinds of inventions to transform Software Engineering from the

inefficient non-CBE paradigm to the ten times more efficient real CBE paradigm

that can design and build every software CBP as illustrated in FIG-2 by

assembling multiple optimal-sized software components.

http://real-software-components.com/raju/Briefs/WhatIsStructureOfCBP.pdf

Raju Chiluvuri Pioneer-soft Inc Page 3 of 3

Transforming From non-CBE-paradigm To CBE-paradigm

There are two engineering paradigms, which are (1) CBE (Component-Based

Engineering) paradigm that builds each large or complex product (e.g. airplane, car,

or spacecraft) by assembling multiple smaller components, and (2) non-CBE paradigm

implies building each large or complex product (e.g. buildings or skyscrapers) by using

reusable ingredient parts (e.g. cement, steel, metals, concrete, alloys, chemicals,

paint, tiles or plastic). Both paradigms use equivalent quantity of reusable ingredient

parts (that are not conducive to be assembled). In case CBE-paradigm, each of the

components is designed and built by using reusable ingredient parts and also each

component is designed so that the component can be easily assembled and

disassembled: http://real-software-components.com/raju/TwoKindsOfParadigms.pdf

Three inventions that are essential for transforming software engineering From

(1) inefficient non-CBE paradigm (as illustrated in FIG-1) that only uses and composes

reusable ingredient parts to build each product; To (2) about ten-times more efficient

real CBE-paradigm (as illustrated in FIG-2) that can build each large software product

by assembling multiple pluggable components, where each software pluggable

component is built by using reusable parts or modules, include:

1. Methods and methodologies to partition each large product in FIG-1, into multiple

optimal size self-contained modules in FIG-2,

2. Technologies, tools and mechanisms (e.g. communication interfaces that can be

plugged-in or loosely coupled) to create and use real software components, and

3. Intelligent tools and mechanisms to automate various tasks and activities that

are necessary to create, document and manage (e.g. redesign) communication

code to plug-in software components, where the communication code allows

collaboration between all the software components that are plugged in.

http://real-software-components.com/raju/TwoKindsOfParadigms.pdf

